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Abstract

Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical
tropopause. The higher and colder SVCs and the larger their ice crystals, the more
likely they represent the last efficient point of contact of the gas phase with the ice
phase and, hence, the last dehydrating step, before the air enters the stratosphere. The5

first simultaneous in situ and remote sensing measurements of SVCs were taken dur-
ing the APE-THESEO campaign in the western Indian ocean in February/March 1999.
The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to
the geometrically and optically thinnest large-scale clouds in the Earth’s atmosphere.
Individual UTTCs may exist for many hours as an only 200–300 m thick cloud layer just10

a few hundred meters below the tropical cold point tropopause, covering up to 105 km2.
With temperatures as low as 181 K these clouds are prime representatives for defining
the water mixing ratio of air entering the lower stratosphere.

1. Introduction

Cirrus clouds are an essential element in the Earth’s radiation budget due to their15

direct radiative forcing and their influence on the water budget in the middle and up-
per troposphere (Lohmann and Roeckner, 1995). Cirrus clouds in the vicinity of the
tropical tropopause regions might in part be responsible for the dehydration of the up-
permost troposphere and therefore also for the water vapor mixing ratio in the lower
stratosphere (Jensen et al., 1996, 2001; Sherwood and Dessler, 2000; Gettelman et20

al., 2001). For cirrus clouds with particularly thin optical thickness, τ, Sassen et al.
(1989) coined the term Subvisible Cirrus (SVC), and used τ < 0.03 as a visibility
criterion. Previous studies have found SVCs with optical thicknesses typically in the
range 10−3 − 10−2 (Heymsfield, 1986; Heymsfield and McFarquhar; 1996; Winker and
Trepte, 1998; Wang et al., 1998; McFarquhar et al., 2000; Omar and Gardner, 2001),25

with occurrence frequencies vanishing rapidly at even lower optical thicknesses. First
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emerging climatological information on laminar cirrus based on remote (lidar, satellite)
and in situ (aircraft) retrievals suggest that they are probably ubiquitous in the tropics
independent of seasons (e.g. Wang et al., 1998; McFarquhar et al., 2000; Winker and
Trepte, 1998).

In February and March 1999, the European airborne campaign APE-THESEO was5

performed from the Seychelles, 5◦ S 55◦ E, with the aim to investigate the effects of
deep convective events and of cirrus on the Upper Troposphere/Lower Stratosphere
(UTLS) water budget in the western Indian ocean. This paper describes the mor-
phology and occurrence frequencies of the particularly thin and high SVCs observed
during APE-THESEO. The underlying particle counter measurements are described10

by Thomas et al. (2002). The details of the formation process of these clouds, how
they are maintained, and to what degree they may lead to dehydration of the upper tro-
posphere and lower stratosphere is still uncertain. A mechanism for their maintenance
and stabilization is described in the companion paper (Luo et al., 2003b). Upon cool-
ing UTTCs are prone to dehydrating the air before it enters the tropical stratosphere, a15

mechanism described by Luo et al. (2003a).

2. APE-THESEO flight strategy

Two aircraft were employed during APE-THESEO and closely coordinated with each
other: the low-flying Falcon, a German research aircraft equipped with a three-wave-
lengths lidar system (1064, 532, 354 nm backscatter ratios; 532 nm depolarization ra-20

tio), and the high-flying Geophysica, a Russian research aircraft with various in-situ
and short-range remote instruments for measuring particles (size distributions, water
and nitric acid in the condensed phase, backscatter in-situ and between 300 m and
2500 m above the aircraft) and trace gases (gas phase water, ozone, CO, N2O, CFC-
11, CFC-12, SF6). For more detailed descriptions of the Falcon lidar system see Wirth25

and Renger (1996) and of the Geophysica payload see Stefanutti et al. (1999).
The tandem deployment of the Falcon and the Geophysica has some unique fea-
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tures. The Falcon lidar system allows to detect extremely thin cirrus structures, which
can neither be observed by ground-based lidar nor by the pilot of the high-flying aircraft.
At 1064 nm wave-length the backscatter ratio is a sensitive indicator of the presence of
thin clouds or aerosol layers, even when the simultaneous backscatter measurements
at 532 nm and 354 nm show practically no indication of a thin cloud feature. This is due5

to the lower Rayleigh backscatter by the air molecules (∝ λ−4), while the backscatter
of ice particles is nearly independent of wavelength as the particles are much larger
than all wavelengths. The lidar information is available as on-line quick-look information
during the flight. Owing to these capabilities the Falcon served as pathfinder for the
Geophysica during APE-THESEO. The high flexibility of the Geophysica allows direct10

changes of altitude and flight direction according to in-flight requests by the mission
scientist onboard the Falcon, e.g. for obtaining controlled changes in altitude in steps
of 50 m. The Falcon, when throttled, can fly with the same speed (relative to ground)
at 10–12 km as the Geophysica at 16–20 km, allowing simultaneous measurements on
the same object, see Fig. 1. Alternatively, the Falcon can fly ahead with increasing15

distance from Geophysica when new space is to be explored. For more information on
the tandem flight options during APE-THESEO and during other campaigns see Peter
et al. (2000).

The simultaneous remote sensing lidar measurement and the in-situ measurements
provide new quantitative information on the microphysical and optical properties of20

cirrus clouds in the 3–4 km below the cold point tropopause, the so-called Tropical
Tropopause Layer, TTL (Sherwood and Dessler, 2000). Clouds with a wide range of
backscattering ratios and various amounts of condensed water content were found.
Besides SVCs and thicker visible cirrus clouds (Santacesaria et al., 2003), UTTCs
were detected and could be characterized as a new, distinct class of ultrathin clouds25

with extremely low optical thickness, τ < 10−3 (Luo et al., 2003a).
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3. Measurements

3.1. Overview

A total of seven scientific tandem flights were carried out during APE-THESEO, each
4–5 h long, mostly employing the Falcon in the pathfinding mode. Figures 2–4 give an
overview over one of these coordinated flights, which took place on 24 February 1999.5

This flight aimed at investigating the microphysical properties of particle distributions
in the TTL close to a deep convective system which was located about 950 km to the
southwest of the Seychelles, see Fig. 2. In Fig. 3, the white curtain with cloud lidar
images shows the Falcon measurements (flight level ∼10 km) and the black line (with
arrows) is the Geophysica flight path (flight levels 14–18 km). In the vicinity of the trop-10

ical thunderstorm (from point B to C in Figs. 2 and 3), there are no lidar measurements
due to heavy precipitation. On the other parts of the flight (C-D-F), an about 2 km thick
visible cirrus deck was located between 12 to 14 km, which was directly connected with
the anvil of the thunderstorm and might in part be outflow from this system. At greater
distances from the storm (G) the visible cirrus cloud turns into an SVC layer at ∼14 km.15

Distinct and extensive UTTC layers were detected above 17 km altitude. The UTTCs
are separated from the anvil clouds and other cirrus by 3–4 km vertical distance. They
are also disconnected from the cumulonimbus turrets, which reached a maximum alti-
tude of 15 km, see Fig. 4 (see also Thomas et al., 2002). In some locations there is a
UTTC double layer, probably related to a double tropopause (as often observed in the20

Seychelles radio sondes).
The general pattern of thicker clouds below 15 km and very thin clouds above 17 km

altitude without direct connection corroborates the concept of the TTL: deep convection
lifts large amounts of water to the lower edge of the TTL, but usually not deeply into
it. Within the TTL the air rises slowly, mainly radiatively and without further convec-25

tive drive. Cirrus clouds may form within the TTL and affect the water vapor budget.
Though suggestive, this picture does not anticipate the mechanisms of dehydration in
the TTL. Deep convection might lead to air masses overshooting the buoyancy equi-
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librium height (hyperventilation), and consequently to cooling far below ambient tem-
peratures. Provided that ice crystals grow to sufficient sizes and manage to sediment
out of these air masses before they sink back to the equilibrium buoyancy level (with
concomitant heating), hyperventilation might lead to extremely dry air masses. This
mechanism has first been advocated by Danielsen (1981) and is recently again pro-5

moted by Sherwood and Dessler (2000). Furthermore, Sherwood (2002) argues that
condensation outside of convection does not reset the water vapor to a lower value
independent of convective influence. Whether the ice particles in convective hyperven-
tilation can grow to sizes large enough for rapid sedimentation is currently very unclear.
On the other hand, the measurements described in this work in combination with cirrus10

cloud modeling lead Luo et al. (2003a) to conclude that UTTCs may indeed be the final
step in the dehydration sequence through which air passes on its way from the lower
troposphere to the stratosphere.

3.2. Lidar measurement of UTTCs

During APE-THESEO lidar measurements on board the Falcon were performed at15

355 nm, 532 nm and 1064 nm. In addition, at 532 nm the depolarization ratio is mea-
sured, which is an indicator for the shape of the particles (spherical droplets versus
non-spherical crystals). Aerosol backscattering ratios at 1064 nm within UTTCs are in
the range Raer

1064 = 1 − 7, while the cloud layers remain practically invisible at 532 nm,
Raer

532 < 0.2. This makes these particles hard to detect, and standard aerosol lidar20

measurements at 532 nm from the ground have no chance detecting UTTCs even af-
ter long integration times. We performed ground measurements during night with the
Falcon lidar at 1064 nm, and an integration over several hours reveals the presence of
the UTTCs as a faint signal below the tropopause.

In principle, it is easier to observe thin laminar clouds at the tropical tropopause when25

looking from above. The LITE experiment with an aerosol lidar at 532 nm onboard
the space shuttle has demonstrated the existence of extensive laminar cirrus in the
tropics all around the globe (Winker and Trepte, 1998). The clouds seen by LITE are
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of similar thickness and altitude as UTTCs, but they find Raer
532 ≈ 3, and consequently

the optical thickness of these clouds is typically one order of magnitude higher than
UTTCs. UTTCs would probably not be visible for LITE.

The optical thickness at 1064 nm of UTTCs can be estimated to range from 1.3×10−4

to 8 × 10−4 using a lidar coefficient of 80 (the ratio between the extinction coefficient to5

backscattering coefficient) obtained by a T-matrix calculation assuming that the ice par-
ticles are prolate spheroids with an aspect ratio ranging from 0.5 to 0.8 (Mishchenko,
1991; Carslaw et al., 1998). The aerosol backscattering ratio at shorter wavelengths
(532 nm and 355 nm) are much smaller and are hardly distinguishable from the back-
ground. The small backscattering ratios at 532 nm is corroborated by in situ measure-10

ments onboard Geophysica performed by the sideways-looking scatterometer MAS
Raer

532 < 0.2.
From Figs. 2 and 3 based on lidar measurements the following characteristics of the

UTTCs may be summarized:
(a) The clouds are located only a few hundred meters below the tropical cold point15

tropopause with a vertical thickness of only 200–300 m, making them prime candi-
dates for the last dehydration step of air during troposphere-to-stratosphere exchange.
(b) Their horizontal extension is several thousands of square kilometers.
(c) Aerosol backscattering ratios of UTTCs are extremely low (Raer

1064 = 1 − 7, Raer
532 <

0.2), which makes these clouds currently best accessible by aircraft-borne lidar mea-20

surements at 1064 nm.
(d) The lidar signal at 532 nm of the UTTCs shows a depolarization signal of 10–30%
from both OLEX (remotely from the Falcon) and MAS (in situ on Geophysica), indicat-
ing particles are of non-spherical shape.
(e) Within UTTCs, the backscattering ratio is relatively homogeneous, despite the small25

backscattering ratio, calling for a non-trivial stabilization mechanism (Luo et al., 2003b).
(f) During the total of 19 h of OLEX in-flight observations on 7 mission flights, the UTTC
coverage was 31%, see Table 1 for more statistical information.
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3.3. In-situ measurements

One section of the extensive UTTC shown in Figs. 2–4 is also shown in Fig. 5a, together
with results from the in situ total water measurements (FISH) and the particle counter
measurements (FSSP-300) on board of the Geophysica in Fig. 5b. The total water,
measured by the Ly-α hygrometer FISH, is shown by the solid line. Extremely low5

water mixing ratios were found in the tropical tropopause region (2.0–2.5 ppmv in the
cloud free areas). Subtracting the gas phase (obtained from the cloud-free areas) from
the total H2O pressure measured by FISH and averaging over the cloud altitude ranges
(identified by FSSP, dashed line) yields about 100 ppbv of H2O in the condensed phase
(after correcting for oversampling of particulate water in the cloud particles by a factor10

of ∼5). The FSSP-300 measurements (Fig. 5b and Fig. 6) show a sudden increase in
total particle volume when entering a UTTC. The FSSP-300 size distributions of UTTCs
show a distinct particle mode around r ≈ 5 − 6µm and particle number densities of 5–
10 particles per liter for r > 3µm (Fig. 6), which are responsible for the measured high
particulate volume. The volume density measured by the FSSP-300 corresponds to a15

water vapor mixing ratio that condensed in the particulate phase of ∼40 ppbv, which is
in fair agreement with the FISH measurement (the origin of the factor 2.5 discrepancy
is not known, but given the accuracies of both instruments this discrepancy is quite
acceptable).

Given the small fraction of only 1–5% of the total water residing in the condensed20

phase the identification of the UTTCs as water ice particles must be questioned. An
alternative identification as nitric acid containing particles, e.g. nitric acid trihydrate
(NAT ≡ HNO3·3H2O) as known from polar stratospheric clouds, would automatically
result in very small amounts of condensate, as there is only a limited amount of HNO3
at the tropical tropopause. The existence of NAT at the tropical tropopause has been25

suggested by Hervig and McHugh (2002). However, Luo et al. (2003a, b) address
this question specifically and conclude that the UTTC particles consist indeed of water
ice. This conclusion is, besides other arguments, corroborated by the counter-flow
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virtual impactor (CVI) measurements onboard of the Geophysica. The CVI has an
integrated tunable diode laser spectrometer (CVI-TDL) for the measurement of HNO3
in the particulate phase, but the instrument showed practically no particulate nitric acid
during the campaign (not shown here, see Luo et al., 2003a), except for one flight into
a tropical cyclone.5

Vertical profiles of the in-situ measurements are shown in the companion paper (Luo
et al., 2003b). On 24 January 1999 the tropopause over the western Indian ocean was
extremely cold (T ≈ 188 K) with a height of about 17.5 km. The UTTCs indicated by an
enhancement in the ice volume were located at about 17.1 km, 400 m below the cold
point tropopause. The air was subsaturated with respect to ice below the UTTCs and10

supersaturated above the UTTCs. In the cloud layer, the air was in equilibrium with ice.
This observation is important to explain the stability of these thin cloud layers, as we
discuss in detail in the companion paper (Luo et al., 2003b).

3.4. Determination of UTTC condensed mass from lidar measurements

The water mixing ratios, that condensed in the UTTCs, can also be estimated from the15

remote sensing lidar measurement using the T-matrix method for the backscattering
coefficients (Mishchenko, 1991; Carslaw et al., 1998). The simulated lidar backscat-
tering ratio at 1064 of 1 ppbv H2O condensed in ice particles is shown in Fig. 7. A
temperature of 190 K is used for the calculation of the molecular number density of air.
The size of the UTTC particles is 5–6µm according to the in situ FSSP measurement.20

For particles with this size the lidar back-scattering ratio of 1 ppbv of ice ranges from
0.04 to 0.2, depending on the aspect ratio (ratio between the axes perpendicular and
parallel to the rotational symmetry). This leads to an ice water content of 5 to 25 ppbv
for a cloud with backscattering ratio of unity at 1064 nm. For the observed UTTCs
with Raer

1064 = 1 − 7, this results in about 25–170 ppbv of H2O that condensed as ice25

(for aspherical particles with aspect ratio = 0.5) or 5–70 ppbv (for nearly spherical or
oblate particles). The same cloud was also sampled by the in situ instruments (Fig. 5),
showing an ice water content of 40–100 ppbv. The ice water content of 25–170 ppbv
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obtained from the lidar measurements, consistent with the in situ data, provided an
aspect ratio of 0.5 for the ice particles is assumed. A more spherical shape (aspect
ratio > 0.5) would lead to less ice water content. The analysis above suggests that
the ice particles with r ≈ 5µm may have a highly non-spherical shape. In the flight on
27 February 1999, even lower aerosol lidar backscatter ratios at 1064 nm (1–2) over a5

larger area were found, indicating that the ice water content can be as low as 25 ppbv.
Hence, the three independent instruments agree with each other within a factor of

2.5, providing strong evidence that the total amount of condensed phase water is very
small, 25–100 ppbv.

4. Conclusions10

UTTCs have the following characteristics: (i) the coverage of these clouds was found
to be high (31%) during the APE-THESEO campaign in February/March 1999 in the
western Indian Ocean; (ii) the vertical thickness of UTTCs are only 200–300 m; (iii) they
reside only a few hundred meters below the cold point tropopause; (iv) their horizontal
extent may reach thousands of square kilometers; (v) the inside of the cloud layer is15

characterized by a high degree of homogeneity; (vi) they consist of water ice particles
with a condensed matter in the cloud particles of 25–100 ppbv H2O, corresponding to
only 1–5% of the total available water vapor; (vii) ice crystal radii are 5–6µm, number
densities 5-10 L−1.

The high degree of homogeneity, the large geographic extent and the faint nature of20

UTTCs requires a stabilization mechanism, which is not necessary or known for other
kinds of clouds. This is treated in detail in the companion paper (Luo et al., 2003b).
The unique combination of high altitude and low number density makes UTTCs highly
suited to serve as drying agent during the last step of dehydration of air directly before
troposphere-to-stratosphere exchange. Luo et al. (2003a) investigate the conditions25

under which UTTCs serve this purpose. They conclude, that UTTCs are likely to yield
a lowering of 0.35 ppmv of H2O in the air exchanged from the troposphere to the strato-
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sphere in the tropics.
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Table 1. Statistics of the total of 19 h of OLEX in-flight observations covering some 14 000 km
of flight distance. Clouds which are optically so thick that it cannot be judged whether or not a
UTTC is above the cloud are not included in this statistics

19 h of airborne aerosol lidar observations Fraction of observations

Thicker cirrus (visible or SVC) without UTTCs 40%
Thicker cirrus and UTTCs 19%
Only UTTCs, no thicker cirrus 12%
Clear sky 29%
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Peter et al., Fig.1 

Fig. 1. Sketch of flight strategy of the Falcon (below 12 km) and the Geophysica (up to 21 km).
Both aircraft can travel at the same speed. On line evaluation of the Falcon lidar measurements
allows to maneuver the Geophysica into extremely thin clouds, e.g. the UTTC shown at 17 km,
which remain invisible to the Geophysica pilot.
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Peter et al., Fig.2 
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Fig. 2. Meteosat cloud image of western Indian ocean on 24 February 1999 showing a tropical
thunderstorm centered at 8◦ S 46◦ E, about 1000 km southwest of the Seychelles at 5◦ S 55◦ E
(point A). Colors indicate brightness temperatures (i.e. approximately the temperature at the
altitude below which the cloud becomes optically thick in the infrared): pink below 213 K; light
blue below 208 K; dark blue below 203 K. Yellow and red line: tandem flight path of Falcon
and Geophysica (except excursion to point E: Falcon only). Red flight legs: UTTCs detected
remotely by Falcon lidar or in situ onboard Geophysica. Yellow flight legs: UTTCs either not
present (parts between A and B and around E) or not detectable because of technical reasons
(heavy precipitation between B and C, window icing between F and G). UTTCs cover a region
of ∼ 105 km2 (D-E-F-G and on the way from A to B) and persist at least 3 h (around F).
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Peter et al., Fig.3 
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Fig. 3. Aerosol backscatter ratio at 1064 nm (i.e. Raer = R1064 − 1 = the backscatter coefficient
of aerosol divided by that of cloud-free air) measured by OLEX on the Falcon on the same flight
as in Fig. 2. Measurement curtain from 12 to 20 km altitude. Periods with no measurements
(either due to heavy precipitation in the vicinity of the Cb or due to window icing) are marked by
gray vertical lines. The Geophysica flight path is marked as black curve. Geophysica followed
the Falcon initially with 30–45 min delay, but after a northward excursion of the Falcon (to E)
was flying exactly above it (from F on within a few tens of meters in the horizontal direction).
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Peter et al., Fig.4 

C                 U   T   T      A       U     U        C        S 

 A                B                              C  D   F        G         A 

Fig. 4. In-situ measurements onboard Geophysica on 24 February 1999, same flight as in
Figs. 2 and 3. Upper panel: flight altitude and temperature with a sketch of the cloud pattern as
derived from the remote and in situ measurements. Lower panel: FSSP-300 particle volume
(blue curve) and particle number density (black curve). Marks A-G in upper panel are equivalent
to Figs. 2 and 3. Marks in lower panel: C = cirrus; U = UTTC; T = cumulonimbus turret; A =
cirrus anvil; S = stratus cloud.
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Peter et al., Figure 5
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Fig. 5. Simultaneous lidar and in situ measurements of the UTTCs between points D and F
in Fig. 3. Panel A: the cloud lidar backscattering ratio at 1064 nm. The black line shows the
flight route of the Geophysica aircraft. Panel B: in situ measurements on board of Geophysica.
Dashed line: volume in condensed phase measured by the FSSP-300. Solid line: total water
measured by the hygrometer FISH (which oversamples particulate water by a factor of 5).
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Peter et al., Figure 6

Fig. 6. Particle size distributions as function of (equivalent sphere) radius r measured by the
FSSP-300 on board of Geophysica on 24 February 1999. Open squares: measurements inside
UTTCs from several cloud encounters (see Fig. 4 and Fig. 3 between points D and F). Lines
without symbol: background aerosols in the immediate vicinity below or above UTTCs.
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Fig. 7. Aerosol lidar backscattering ratio of 1 ppbv H2O condensed as ice particles with radius
and asphericity as indicated on the axes (aspect ratio defined as ratio between the axes per-
pendicular and parallel to the rotational symmetry). The aerosol backscatter is calculated by
using the T-matrix method (Mishchenko, 1991) assuming that the particles are spheroids. The
backscattering ratio can be scaled to other ice water content by just multiplying the scale shown
in the right hand side by the amount of the actual ice water content in ppbv. The radius given
here is the mode radius (equivalent sphere) of a lognormal size distribution with mode width
σ = 1.20. The white box in the lower right corner indicates the region of interest for UTTCs.
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